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Multiple Testing



Multiple Testing

Recall that when we were doing two sample t-tests, we were
testing the equality of means between two populations.

H0 : µX = µY

H0 : µX 6= µY

We could think of these two samples, X and Y , as coming from
two experimental conditions:

I X corresponds to the treatment group

I Y corresponds to the control group

But what if we had more than two experimental conditions?



Multiple Testing

Suppose we had I experimental conditions for which we wanted
to test the equality of means and reject if our p-value is less
than α = 0.05:

H0 : µ1 = µ2 = ... = µI

H1 : at least one of the experimental conditions has different mean

Why might it be a bad idea to test each of these equalities via
multiple two-sample t-tests, where we reject individual tests if
the p-value is below α = 0.05?

H0 : µ1 = µ2

H0 : µ2 = µ3

...

H0 : µI−1 = µI



Multiple Testing

Conducting multiple hypothesis tests leads to the multiple
testing problem. Suppose we are conducting multiple tests,
each at the 5% level. For example

I Suppose that we want to consider the efficacy of a drug in
terms of the reduction of any one of I disease symptoms:

H0 : µ
(1)
X = µ

(1)
Y symptom 1

H0 : µ
(2)
X = µ

(2)
Y symptom 2

...

H0 : µ
(I)
X = µ

(I)
Y symptom I

I As more symptoms are considered, it becomes more likely
that the new drug (Y ) will appear to improve over the
existing drug (X) in terms of at least one symptom just by
chance.



Multiple Testing

H0 : µ
(1)
X = µ

(1)
Y symptom 1

H0 : µ
(2)
X = µ

(2)
Y symptom 2

...

H0 : µ
(I)
X = µ

(I)
Y symptom I

I For each individual test, the probability of incorrectly
rejecting the null hypothesis (if the null hypothesis is true)
is 5%.

I For 100 tests where the null hypotheses are all true, the
expected number of incorrect rejections is 5.

I If the tests are independent, the probability of at least one
incorrect rejection is 99.4% (which is MUCH larger than
5%).



Multiple Testing

How can we deal with the multiple testing problem?

One common approach is to control the family-wise error
rate (the probability of at least one incorrect rejection) at 5%.

I Recall that if we conduct 100 independent tests each at the
5% level, then the FWER is 99.4%.

I We need to adjust our method so that we lower the FWER
to 5%.

Idea: maybe we can perform each individual test at a lower
significance level?



Multiple Testing: Bonferroni Correction

The Bonferroni multiple testing correction:

I Suppose that you intend to conduct I hypothesis tests each
at level α.

I Then to fix the family-wise-error rate at α, you should
instead conduct each of the I hypothesis tests at level α

I .

I That is, for each test only reject H0 if the p-value is less
than α

I instead of just α
I if α = 0.05, and I = 100, this means you reject when you

get p-values less than 0.05/100 = 0.0005.

I Then the probability of (at least) one incorrect rejection
will be at most α.



Multiple Testing

Instead of testing each equality separately and correcting for
multiple comparisons, is there a way that we can simply test
the joint hypothesis

H0 : µ1 = µ2 = ... = µI

H1 : at least one of the experimental conditions has different mean

by using a single test?

The answer is yes: we can use ANOVA.

I Downside of ANOVA: Rejecting H0 does not tell you which
of the groups have different means!



ANOVA
Analysis Of Variance



ANOVA

In ANOVA, we are asking the question: “Do all our groups
come from populations with the same mean?”

I To answer this question, we need to compare the sample
means.

I However, there will always be some differences due to
sampling variation.

A more reasonable question might instead be: “Are the
observed differences between the sample means simply
due to sampling variation or due to real differences in
the population means?”

I This question cannot be answered just from the sample
means - we also need to look at the variability.



ANOVA

In ANOVA we compare:

I the variability between the groups (how much variability
is observed between the means from different groups?) to

I the variability within the groups (how much natural
variation is there in our measurements?).

If the variability between the groups is not significantly more
than the variability within the groups, then it is likely that the
observed differences between the group means are simply due to
chance.



ANOVA

The assumptions required for ANOVA are:

I the observations are independent

I the observations are random samples from normal
distributions

I the populations have common variance, σ2.



ANOVA

Suppose we have a sample of J observations from each of I
populations (groups)

G1 G2 . . . GI
Y11 Y21 . . . YI1
Y12 Y22 . . . YI2

...
...

...
...

Y1J Y2J . . . YIJ

We are interested in testing

H0 : µ1 = µ2 = ... = µI

H1 : at least one of the populations has different mean

where µk is the true mean for population k.



ANOVA

We can formulate a model as follows:

Yij = µ+ αi + εij

where εij
IID∼ N(0, σ2)

I Yij is the observed response for the jth observation for
group i.

I µ is the overall global mean across all groups.

I αi is an offset from the global mean for each group, such
that µi = µ+ αi

I εij is a random error term for the jth observation in group i



ANOVA

The ANOVA model is:

Yij = µ+ αi + εij

Recall that the null hypothesis in ANOVA is:

H0 : µ1 = µ2 = ... = µI

since µi = µ+ αi, this is equivalent to

H0 : αi = 0 for all i



ANOVA

Let’s define some notation:

I Yij represents the jth observation in group i

I Y i represents the mean in group i

I Y represents the mean of all observations

which we can calculate as follows:

Y i =
1

J

J∑
j=1

Yij

Y =
1

IJ

J∑
j=1

I∑
i=1

Yij =
1

IJ

∑
i,j

Yij



ANOVA
We can capture the different types of variance via the sum of
squares:

I Total sum of squares: compares each observations to the
overall mean (overall variance)

SST =

I∑
i=1

J∑
j=1

(Yij − Y )2

I Between sum of squares: compares the group means to
the overall mean (variance between groups)

SSB = J
I∑
i=1

(Y i − Y )2

I Within sum of squares: compares each observation to
its corresponding group mean (variance within groups)

SSW =

I∑
i=1

J∑
j=1

(Yij − Y i)
2



ANOVA

It is not hard to show that the total sum of squares can be
decomposed into the sum of the between sum of squares and
the within sum of squares:

SST = SSB + SSW

I∑
i=1

J∑
j=1

(Yij − Y )2 = J

I∑
i=1

(Y i − Y )2 +

I∑
i=1

J∑
j=1

(Yij − Y i)
2



ANOVA

Each source of variability also has its own associated degrees of
freedom:

I SST compares the IJ observations to the overall mean, so
has IJ− 1 degrees of freedom

I SSB compares the I group means to the overall mean, so
has I− 1 degrees of freedom

I SSW compares the IJ observations to the I group means,
so has IJ− I = I(J− 1) degrees of freedom

Notice that
IJ − 1 = I(J − 1) + (I − 1)

dfT = dfB + dfW

so the degrees of freedom are related in the same way as the
sum of squares.



ANOVA
Recall that to test H0, we want to compare the between sum of
squares to the within sum of squares. Thus we define our test
statistic (standardized by df) to be:

F :=
SSB/(I − 1)

SSW /(I(J − 1))

we note that, under H0,

SSB
σ2

=
J
∑I

i=1(Y i − Y )2

σ2
∼ χ2

I−1

SSW
σ2

=

∑I
i=1

∑J
j=1(Yij − Y i)

2

σ2
∼ χ2

I(J−1)

and thus, under H0, the distribution of our test statistic is:

F :=
SSB/(I − 1)

SSW /(I(J − 1))
∼ FI−1,I(J−1)



ANOVA

In summary, if we want to test

H0 : µ1 = µ2 = ... = µI

using ANOVA, we calculate the test statistic

F =
SSB/(I − 1)

SSW /(I(J − 1))

and the corresponding p-value

p-value = P
(
FI−1,I(J−1) ≥ F

)
(to understand the form of the p-value, think about what a
“more extreme” value of F w.r.t H1 would correspond to).



ANOVA

It is common to summarize the data in the following table, from
which the test statistic can just be read off

Source of variability df SS MS F

Treatments (between) I − 1 SSB MSB MSB/MSW
Error (within) I(J − 1) SSW MSW

Total IJ − 1 SST

where
MSB = SSB/(I − 1)

MSW = SSW /(I(J − 1))

are the mean sum of squares.



Example: ANOVA

Suppose that we only knew some of the values in the table. We
can usually fill in the rest, and perform the test:

Suppose we have 6 groups and 4 samples from each group. But
the only values in the table given to us are:

Source of variability df SS MS F

Treatments ? ? ? ?
Error ? 55 ?
Total ? 98

So all we know is

SSW = 55 SST = 98



Example: ANOVA

We know, however that I = 6 and J = 4, so we can fill in the
degrees of freedom

dfB = I − 1 = 5

dfW = I(J − 1) = 6× 3 = 18

dfT = IJ − 1 = 6× 4− 1 = 23

Source of variability df SS MS F

Treatments 5 ? ? ?
Error 18 55 ?
Total 23 98

we can check that this makes sense since we should have

dfT = dfB + dfW



Example: ANOVA

We also know that

SST = SSB + SSW

So that
SSB = SST − SSW = 98− 55 = 43

Source of variability df SS MS F

Treatments 5 43 ? ?
Error 18 55 ?
Total 23 98



Example: ANOVA

The rest are easy: to get the MS column, just divide the SS
column by the df column

Source of variability df SS MS F

Treatments 5 43 43/5 ?
Error 18 55 55/18
Total 23 98



Example: ANOVA

To get the F value, divide the MSB (treatments) by MSW
(error)

Source of variability df SS MS F

Treatments 5 43 43/5 2.81
Error 18 55 55/18
Total 23 98

So our p-value is

P (F5,18 ≥ 2.81) = 0.048



Exercise



Exercise: ANOVA (Rice 12.5.3)

For a one-way ANOVA with two groups (I = 2), show that the
F statistic is just t2, where t is just the t statistic for a
two-sample t-test.

That is, show that ANOVA with two groups is equivalent to a
two-sample t-test with the common variance assumption.



Exercise: ANOVA
Recall that a few weeks ago, I wanted to compare the average
delivery time for two pizza companies. Well, this week I went
pizza crazy and ordered 10 pizzas from each of La Val’s, Sliver
and Pieology, and recorded how long it took them to deliver to
my office in Evans.



Exercise: ANOVA

The recorded delivery times are as follows:

La Val’s Sliver Pieology

32 27 52
48 32 40
51 37 41
47 21 36
41 25 32
35 28 38
37 36 37
41 38 42
43 29 39
38 30 30

Test the hypothesis that all three pizzas places have the same
mean delivery time.



A non-parametric version of ANOVA
The Kruskal-Wallis Test



Kruskal-Wallis

The Kruskal-Wallis test is generalization of the Mann-Whitney
test to multiple groups, and corresponds to a non-parametric
version of one-way ANOVA.

It tests whether each of the groups come from the same
distribution:

H0 : F1 = F2 = .... = FI

I The observations are asssumed to be independent

I No distributional form, such as normal, is assumed (the
test is non-parametric)



Kruskal-Wallis

The observations are pooled together and ranked.

Let Rij be the rank of Yij in the combined sample.

The average rank in the ith group is thus defined as

Ri =
1

J

J∑
j=1

Rij

And the global mean of the ranks is given by

R =
1

IJ

I∑
i=1

J∑
j=1

Rij =
IJ + 1

2



Kruskal-Wallis
As in ANOVA, define the between sum of squares (a measure of
variance of the group means) be

SSB =

I∑
i=1

J(Ri −R)2

We can use SSB to test the null hypothesis that the groups
have the same distribution

I Larger SSB provides stronger evidence against H0

I The distribution of a transformation of SSB can be
calculated as follows:

K =
12

IJ(IJ + 1)
SSB ∼ χ2

I−1

Note that K can also be expressed as

K =
12

IJ(IJ + 1)

(
I∑
i=1

JR
2
i

)
− 3(IJ + 1)



Kruskal-Wallis

Our test statistic is:

K =
12

IJ(IJ + 1)
SSB ∼ χ2

I−1

Note that K can also be expressed as

K =
12

IJ(IJ + 1)

(
I∑
i=1

JR
2
i

)
− 3(IJ + 1)

And our p-value can thus be calculated as

p-value = P
(
χ2
I−1 ≥ K

)
where this is a “greater than” statement since a larger value of
K provides more evidence against H0, so larger values are
“more extreme”.



Exercise



Exercise: Kruskal-Wallis (non-parametric ANOVA)

Recall that the delivery times did not particularly seem to
satisfy the normal assumption required by ANOVA. Instead,
conduct a non-parametric test to investigate whether the
delivery times for La Val’s, Pieology and Sliver come from the
same distribution.


