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Fisher’s Exact Test



Fisher’s Exact Test

A categorical variable is a variable that can take a finite
number of possible values, thus assigning each individual to a
particular group or “category”.

We have seen categorical variables before, for example, our
ANOVA factors:

I pen color

I gender

I beer type

However, for ANOVA we also had a continuous response
variable.



Fisher’s Exact Test

Purely categorical data are summarized in the form of a
contingency table, where the entries in the table describe
how many observations fall into each grouping. For example

Right-handed Left-handed Total

Males 43 9 52
Females 44 4 48

Totals 87 13 100

The total number of individuals represented in the contingency
table, is the number in the bottom right corner.



Fisher’s Exact Test

Right-handed Left-handed Total

Males 43 9 52
Females 44 4 48

Totals 87 13 100

We might want to know whether the proportion of
right-handed-ness is significantly different between males and
females.

We can use Fisher’s exact test to test this hypothesis.

I It is called an exact test because we know the distribution
of the test statistic exactly rather than just approximately
or asymptotically.



Fisher’s Exact Test

Suppose that we have two categorical factors, A and B, each of
which has two-levels, and the number of observations in each
group is given as follows:

A1 A2 Total

B1 N11 N12 n1·
B2 N21 N22 n2·

Totals n·1 n·2 n··

Then under the null hypothesis that there is no difference
between the proportions of the levels for factor A or B, i.e. that
the two factors are independent, then the distribution of N11

is hypergeometric.



Fisher’s Exact Test

The Hypergeometric(N,K, n) distribution describes the
probability of k successes in n draws, without replacement,
from a finite population of size N that contains exactly K
successes, wherein each draw is either a success or failure.

If X ∼ Hypergeometric(N,K, n), then

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
and we note that

E(X) =
nK

N



Fisher’s Exact Test

A1 A2 Total

B1 N11 N12 n1·
B2 N21 N22 n2·

Totals n·1 n·2 n··

Under H0, the dist of N11 is Hypergeometric(N,K, n), where

N = n·· , K = n1· , n = n·1

So

P (N11 = n11) =

(
n1·
n11

)(
n2·
n21

)(
n··
n·1

)
and

E(N11) =
n·1n1·
n··

Note that under the symmetry of the problem, I could
transpose the matrix and get the same answer (I usually just
think about what do I want to be considered a “success”).



Fisher’s Exact Test

A1 A2 Total

B1 N11 N12 n1·
B2 N21 N22 n2·

Totals n·1 n·2 n··

To conduct the hypothesis test, we can think about rejecting
H0 for extreme values of N11

I N11 is our test statistic



Fisher’s Exact Test

A two-sided alternative hypothesis can be stated in several
equivalent ways, for example:

I the proportion of right-handedness differs between men and
women

I the proportion of women differs between right-handed
people and left-handed people

I right/left handedness and gender are independent

The two-sided p-value can be written as

P (|N11 − E(N11)| ≥ |n11 − E(N11|)



Fisher’s Exact Test

A one-sided alternative hypothesis can also be stated in
several equivalent ways, for example:

I the proportion of right-handedness is higher (lower) for
men than for women

I the proportion of men is higher (lower) for right-handed
people than for left-handed people

The one-sided p-value can be written as

P (N11 ≥ n11) or P (N11 ≤ n11)



Fisher’s Exact Test
For our example

Right-handed Left-handed Total

Males 43 9 52
Females 44 4 48

Totals 87 13 100

N11 ∼ Hypergeoetric(100, 87, 52)

n11 = 43 E(N11) =
n·1n1·
n··

=
52× 87

100
= 45.24

So that our two-sided p-value is given by

P (|N11−E(N11)| ≥ |n11 − E(N11|) = P (|N11 − 45.24| ≥ 2.24)

= P (N11 − 45.24 ≥ 2.24) + P (N11 − 45.24 ≤ −2.24)

= P (N11 ≥ 47.48) + P (N11 ≤ 43)

= 0.24



Exercise



Exercise: Fisher’s Exact Test (Rice 13.8.19)

I A psychological experiment was done to investigate the
effect of anxiety on a person’s desire to be alone or in
company.

I A group of 30 subjects was randomly divided into two
groups of sizes 13 and 17.

I The subjects were told that they would be subject to
electric shocks.

I The “high anxiety” group was told that the shocks would
be quite painful

I The “low-anxiety” group was told that they would be mild
and painless.

I Both groups were told that there would be a 10-min wait
before the experiment began and each subject was given
the choice of waiting alone or with other subjects.



The results are as follows:

Wait Together Wait Alone Total

High-Anxiety 12 5 17
Low-Anxiety 4 9 13

Total 16 14 30

Test whether there is a significant difference between the high-
and low-anxiety groups.



χ2 Test for Homogeneity



χ2 Test for Homogeneity

Suppose now that instead of a 2× 2 table, we have an arbitrary
I × J table, and we want to see if the count proportions are
differently distributed across different populations.

For example, suppose we are interested in whether TV show
preference differs significantly between different age groups.

18 to 30 30 to 45 Total

Game of Thrones 40 31 71

House of Cards 25 35 60

Orange is the New Black 30 23 53

Total 95 89 184



χ2 Test for Homogeneity

Suppose that we have J multinomial distributions, each having
I categories. If the probability of the ith category of the jth
multinomial is denoted πij , the null hypothesis to be tested is

H0 : πi1 = πi2 = ... = πi1, i = 1, ..., I

However, we can view this as a goodness-of-fit test: Does the
model prescribed by the null hypothesis fit the data?
Recall that Pearson’s χ2 statistic is given by

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)
2

Eij

=

I∑
i=1

J∑
j=1

(nij − ni·n·j/n··)2

ni·nj·/n··



χ2 Test for Homogeneity

The degrees of freedom for the χ2 statistic are the number of
independent counts minus the number of independent
parameters estimated from the data. Under the assumption of
homogeneity, we have

I J(I − 1) independent counts, since each of the J
multinomials has I − 1 independent counts.

I (I − 1) independent parameters that have been estimated
since the totals for each multinomial are fixed

The degrees of freedom for our test statistic is thus

df = J(I − 1)− (I − 1) = (I − 1)(J − 1)



χ2 Test for Homogeneity

For the null hypothesis of homogeneity in the populations:

H0 : πi1 = πi2 = ... = πi1, i = 1, ..., I

our p-value is given by

p-value = P
(
χ2
(I−1)(J−1) ≥ X

2
)



χ2 Test for Homogeneity

So for our example, our observed counts are given by

18 to 30 30 to 45 Total

Game of Thrones O11 = 40 O12 = 31 71

House of Cards O21 = 25 O22 = 35 60

Orange is the New Black O31 = 30 O32 = 23 53

Total 95 89 184

and our expected counts under H0 are given by

18 to 30 30 to 45

Game of Thrones E11 = 95×71
184

= 36.7 E12 = 89×71
184

= 34.3

House of Cards E21 = 95×60
184

= 31.0 E22 = 89×60
184

= 29.0

Orange is the New Black E31 = 95×53
184

= 27.4 E32 = 89×53
184

= 25.6



χ2 Test for Homogeneity
So for our example, our observed (expected) counts are given by

18 to 30 30 to 45 Total

Game of Thrones 40 (36.7) 31 (34.3) 71

House of Cards 25 (31.0) 35 (29.0) 60

Orange is the New Black 30 (27.4) 23 (25.6) 53

Total 95 89 184

so our test statistic is given by

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)
2

Eij
=

(40− 36.7)2

36.7
+

(25− 31)2

31

+
(30− 27.4)2

27.4
+

(31− 34.3)2

34.3

+
(35− 29)2

29
+

(23− 25.6)2

25.6
≈ 3.528



χ2 Test for Homogeneity

Our test statistic is given by

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)
2

Eij
= 3.528

and thus the p-value for the test is

P
(
χ2
(I−1)(J−1) ≥ X

2
)

= P
(
χ2
2 ≥ 3.528

)
= 0.17

which is larger than 0.05, so we fail to reject our null hypothesis
and conclude that there is no significant difference between TV
preferences for the different age groups.



χ2 Test for Independence



χ2 Test for Independence

The χ2 test for independence is eerily similar to (read exactly
the same as) the χ2 test for homogeneity, but is aimed at
answering a slightly different question.

Suppose that a psychologist wants to test whether there is a
relationship between personality and color preference. Then
they are testing the null hypothesis that color preference and
personality are independent. They have observed the following
counts

Blue Red Yellow Total

Extroverted 5 20 5 30
Introverted 10 5 5 20

Total 15 25 10 50

We again use the X2 test statistic.



χ2 Test for Independence

The degrees of freedom for the χ2 statistic are the number of
independent counts minus the number of independent
parameters estimated from the data. Under the assumption of
independence, we have

I IJ − 1 independent counts, since we have IJ cells, with
any one cell entirely determined by the sum of the others.

I (I − 1) + (J − 1) independent parameters that have been
estimated to give the marginal probabilities that determine
the expected counts

The degrees of freedom for our test statistic is thus

df = (IJ − 1)− [(I − 1) + (J − 1)] = (I − 1)(J − 1)



χ2 Test for Independence

For the null hypothesis of indpendence:

H0 : The row factor is independent of the column factor

our p-value is given by

p-value = P
(
χ2
(I−1)(J−1) ≥ X

2
)

which is exactly the same as the χ2 test for homogeneity.



Exercise



Exercise: χ2 Test for Independence

Determine whether there is a relationship between color
preference and personality in the psychologists’s experiment

Blue Red Yellow Total

Extroverted 5 20 5 30
Introverted 10 5 5 20

Total 15 25 10 50



Simple Linear Regression



Simple Linear Regression

We have spent the last couple of weeks identifying if variables of
interest have an effect on some response. Now we turn to asking
the question of how our variables of interest affect the response.

For example, we might ask “if I increase the value of variable x
by one unit, what happens to the response, y?”.

Simple linear regression refers to the case when we have only
one explanatory variable, x.



Simple Linear Regression
The idea behind linear regression by least squares is to identify
the line of best fit when we plot y against x by minimizing the
sum of the squared distances from the points to the line.

The red line above will have the form

y = β0 + β1x

and our goal is to estimate the intercept β0 and the slope β1
using our observed data.



Simple Linear Regression

The statistical model corresponding to our data is given by

yi = β0 + β1xi + εi

where εi corresponds to the unobserved random noise which
explains the deviation from the line β0 + β1xi. εi satisfies
E(εi) = 0 and V ar(εi) = σ2 (xi is considered fixed).

We estimate β0 and β1 by finding the values, β̂0 and β̂1, that
minimize the following equation

S(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)2

which corresponds to minimizing the vertical distance from each
observed point, yi, to the corresponding point on the fitted line
β̂0 + β̂1xi (i.e. we want to minimize the residuals).



Exercise



Exercise: Simple Linear Regression (Rice 14.9.10)

Show that the values of β0 and β1 that minimize

S(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)2

are given by

β̂0 = y − β̂1x

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2



Simple Linear Regression

Note that these estimators can be written as

β̂0 = y − β̂1x

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=
Cov(x, y)

V ar(x)
=
sxy
sx

= ρ

√
sy
sx

where ρ =
sxy√
sxsy

is the correlation coefficient between x and

y. Note that
|ρ| ≤ 1

The correlation describes how much of a linear relationship
there is between x and y. A strong linear relationship will have
|ρ| close to 1 (however the converse is not necessarily true –
always make plots to check!)



Simple Linear Regression

Some theoretical results about these estimators:
β̂0 and β̂1 are unbiased:

E(β̂j) = βj

Moreover, we can calculate the variance and covariance of
these estimators to find that

V ar(β̂0) =
σ2
∑n

i=1 x
2
i

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

V ar(β̂1) =
nσ2

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

Cov(β̂0, β̂1) =
−σ2

∑n
i=1 xi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

Question: where does the randomness come from?



Simple Linear Regression

To estimate the variance of the estimators, we need to know σ2,
which we rarely do. We can, however, estimate σ2. Recall that
our model is

yi = β0 + β1xi + εi

where εi ∼ N(0, σ2).

Then we can rearrange as follows:

εi = yi − β0 − β1xi

so perhaps we can estimate σ2 by looking at the variances of
the εi... but we don’t observe εi!



Simple Linear Regression

εi = yi − β0 − β1xi
We can estimate εi by substituting β̂0 and β̂1, so we define the
ith residual to be

ei = yi − β̂0 − β̂1xi

so let’s estimate σ2 by the variance of the residuals:

σ̂2 =
RSS

n− p
=

∑n
i=1 e

2
i

n− p

where p is the number of variables we have (p = 2 for simple
linear regression)



Exercise



Exercise: Simple Linear Regression
The faithful dataset in R contains data on (1) the waiting
time (in mins) between eruptions and the duration of the
eruption (in mins) for the Old Faithful geyser in Yellowstone
National Park, Wyoming, USA. We have 272 observations.



Exercise: Simple Linear Regression

The faithful dataset in R contains data on (1) the waiting
time (in mins) between eruptions and the duration of the
eruption (in mins) for the Old Faithful geyser in Yellowstone
National Park, Wyoming, USA. We have 272 observations.

I Plot duration versus waiting time.

I Apply the simple linear regression model where we are
regressing duration on waiting time.

I Report the fitted regression line, as well as the variance
and covariance of the parameter estimates.

I Estimate the next eruption duration if the waiting time
since the last eruption has been 80 minutes ago.


